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Abstract. A fully explicit formula for the eigenvalues of Casimir invariants gy (gl (m|n))

is given which applies to all unitary irreps. This is achieved by making some interesting
observations on atypicality indices for irreps occurring in the tensor product of unitary irreps of
the same type. These results have applications in the determination of link polynomials arising
from unitary irreps ofU, (gl (m|n)).

1. Introduction

The study ofZ,-graded or supersymmetric quantum algebras has generated substantial
interest recently. Primarily this has been due to their role in solving the Yang—Baxter
equation and generating associated integrable models through the quantum inverse scattering
method (QISM). Since supersymmetric algebras accommodate both bosonic and fermionic
degrees of freedom, such models may be interpreted as describing systems of interacting
fermions and specifically correlated electrons. The approach first appeared in the work on the
supersymmetric—J model [1]. Subsequently the supersymmetric extended Hubbard model
[2] and the supersymmetrit/ model [3] were formulated using QISM. Thedeformed
analogues of the above models are discussed in [4,5]. In fact on the open chain these
models acquire quantum supersymmetry for a particular choice of boundary conditions [5].
Models derived in the context of supersymmetric realizations of the Temperley-Lieb algebra
are described in [6] while the case of the Birman—-Wenzl-Murakami algebya(m|2n)
invariant) can be found in [7].

In order to gain an understanding of these models it is necessary to develop the
representation theory of the underlying symmetry algebras. For the type | quantum
superalgebras consisting 0f, (g/(m|n)) and U, (osp(2|2n)) rapid and significant progress
has been made. A description of the finite dimensional irreducible representations (irreps)
in terms of the induced module construction has been developed [8, 9], all the unitary irreps
have been classified [10, 11], thesuperdimensions of quasi-typical irreps are known [12]
and the matrix elements of thHg&, (¢/(m|n)) generators in essentially typical representations
have been given [13].

Recently, a formula for the eigenvalues of the Casimir invariants for the type | quantum
superalgebras has been derived [14, 15] when acting on irreducible highest-weight modules.
However, the formula may sometimes prove difficult to use when applied to some irreps,
as seen below. The aim of this paper is to illustrate that when restricted to unitary irreps of
U, (gl(m|n)) these difficulties may be overcome by applying certain results on the atypicality
indices for irreps occurring in the tensor product of unitary irreps of the same type. This
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approach permits us to give explicit formulae for the eigenvalues of the Casimir invariants.
An important application of this result is in the evaluation of link polynomials as we will
illustrate.

2. Fundamentals

Let g denote a basic classical Lie superalgebra of rank 1 with usual generators
lei, fi, hiY_y. Let{o;}i_, be the distinguish set of simple roots gfin the sense of Kac
[16] and let(, ) be a fixed invariant bilinear form oH*, the dual of the Cartan subalgebra
H of g. We also letd™ = &J U & denote the full set of roots witkb? (resp.d]) the
subset of even (resp. odd) roots. Throughout, we adopt the conventiomptbdanotes the
unique odd simple root. Associated wighone can define the quantum superalgelifég)
which has the structure of&,-graded quasi-triangular Hopf algebra [17]. We will not give
the full defining relations of/,(g) here. We note, however, thé, (g) has a co-product
structure given by

A =g @ AW =x@q Mg ex  x=e.f

which is extended to an algebra homomorphism to allgfg) in the usual way. It is
important to point out that the multiplication rule for the tensor product is defined for
homogeneous elementsb, ¢, d, € U,(g) by

@®b)(c®d) = (-D"(ac ® bd) 1)

and extended linearly to all d¥/,(g) ® U,(g). Here p] € Z, denotes the degree of the
homogeneous elemeate U, (g), which is defined for the elementary generators by

[h;] =0 le:] = [fi] = [i] = éio YO<i <!
and extended to all homogeneous element& gf) through
[ab] = [a] + [b](mod 2 Va,b € Uy(g).
The twist mapT : U,(g) @ U,(g) — U,(g) ® U,(g) is defined by
Ta®b)= (-1 Q4 2)

for all homogeneous, b € U,(g): we setA = TA. There exists a canonical element
R e U,(g) ® U,(g) called the universakR-matrix which is even and invertible and satisfies
the following well known relations

RA(a) = A(@)R Ya € Uy(g) (3)
(A® IR = Ri3R23 (I ® A)R = Ry3R1» 4)

where we have adopted the conventional notation. From equations (3) and (4) it follows
that the universaR-matrix satisfies th&,-graded Yang—Baxter equation

R12R13R23 = Rp3R13Rq). (%)

We emphasize that multiplication of the tensor products is to obey equation (1).

Let p € H* denote the graded half sum of positive rootsgoand lets, denote the
unique element off defined byw;(h,) = (p, o), Yo € H*. We recall from [18] the
following result.
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Theorem 1Let 7 be a fixed, but arbitrary, finite dimensional representatiob/gfg) with
representation spadé and set

A, =m@QA.
If we U,(¢g) ® EndV satisfies

Az (@w = wA;(a) Va € Uy(g) (6)
then

sT,(w) = (Srel) (mw(g?) ® Dw
belongs to the centre df,(g), where str denotes the supertrace. O

Theorem 1 enables a family of Casimir invariants to be constructed fg) utilizing
the universalR-matrix for any reference modul€. Defining RT = TR, it is clear from
(3) that

RTRA(a) = A(@)RTR Ya € U, (g).
Setting
A=@q-¢H ' @®DU®I—-R"R)
then A!, [ e Z*, satisfies (6). We thus obtain the family of Casimir invariants
C) = st,(A"). (7)

The above discussion applies to all quantum superalgebras. Hereafter we will restrict our
focus toU, (gl (m|n)). For the full defining relations fot/, (gl (m|n)) we refer to [19].

Let V(n) denote a finite dimensional irreduciblé,(g) module of highest weight
w € DT whereDt C H* is the set of dominant weights, and fgt denote the representation
afforded byV (). For the quantum superalgebg (gl (m|n)), u € D* if and only if

2(p, ;) c 7
(@i, ;)
while (u, ap) can take arbitrary complex values [8]. When actingo6u) the invariants

C; act as scalar multiples of the identity operator (Schur’'s lemma), which we denote by
x.(Cp). From [14,15] we have the following result.

1<i<l!

Theorem 2Let ; denote the distinct weights in the reference modaleith multiplicities
m; and ]p;] the degree of,;. The eigenvalues of the Casimir invariants (7) acting on the
irreducible moduleV () are given by

. C — _1[)\1'] ; : ! [(M+)\‘l+p’a)]l] [(,bL—|—,0,0é)]q 8
X (CD) Z( )Wlm, [ (] 1;[ (Gt ool 11 [t o, (8)
where

IB(M) _ 1— qf()ni,)\;+2u+2p)+(A,A+2p)
’ q—qt
and
qx _ q—x
o = q—qt
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Recall [8] that forU, (g/(m|n)) we sayu € H* is typical if
(m+p,a)#0 Va € &7

andatypical otherwise. It is apparent that the above eigenvalue formula is not well defined
for those i such thatu + A; is atypical for somex;. However, in principle (8) is a
polynomial function of¢g**® « € ®* so the right-hand expression may be expanded.
This unfortunately proves to be technically difficult (e.g. see [15]). We wish to illustrate
that in the case oA andu being unitary of the same type, one may obtain an alternative
simple expression fog, (C;) which is always well defined.

Next we will briefly describe the unitary irreps. A more detailed discussion may be
found in [10]. Define a dagger operation on tig(g/ (m|n)) generators through

(€)' = fi Mlr=ea ) =h.
This operation is extended to all &f,(gl(m|n)) by
(ab)t = blat Va, b € U,(gl(m|n)).

There are two types of unitary representations wiiiglig/ (m|n)) admits. We say thai,
A, V(A) are type | unitary if

EINCOEE N
and type Il unitary if
ma@h) = (=D, (@)

where the dagger operation for matrices denotes (non-graded) Hermitian matrix conjugation.
For each unitary irrep there exists a positive definite invariant sesquilinear form which
we denote( , ). These representations have the property that the tensor product of two
representations of the same type reduces completely into representations also of the same
type. The two types of unitary representations are in fact related by duality [10].

Throughout we choose the basis}! ; U {5,};_; for the dual of the Cartan subalgebra
H* equipped with the invariant bilinear form

(&i, &) = djj (805 6v) = =By (&i,6,) =0 Vi<i,j<m, 1<, v<n.
In terms of this basis we have the sets of even and odd positive roots given by

¢a’:{8i—£j|1<i<j<m}U{5ﬂ—8v|1<u<v<n}
OF ={e —8,|1<i<m,1<v<n}

and theZ,-graded half sum of positive roots is expressed as
p=3Y (m—n—2i+De+3Y (m+n—2u+13s,.
i=1 n=1

Given an irreducible modul& (A), A € DT, we letTI(A) denote the weight spectrum
of V(A). For later use we have the following technical results.

Lemma l.Let V(A), A € DT be type | unitary. Then
W, p) =0 VB € dF ¥ e TI(A).
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Proof. It suffices to consider the classical — 1) case only. Letw, # 0 be a weight
vector of V(A) with weighty. For g = & —§, € & we have two possibilities; either
Elv, =0 or E} v, # 0 whereE/, denotes the standagd(m|n) generator of weight; —§,,
under the adjoint action. In the former case we have, singg) is type | unitary,
0 < (E;Lv‘//’ Ei"v,p)
= (vy, E, E{'vy)
= (¥, & — du) vy, vy)
where we have used the relatiai} £/ + E/' E!, = E! + E!!. Since the form(, ) is positive
definite we immediately see thé{, 8) > 0.
In the latter case seb = ELW so thatw is the weight vector of weigh{> + 8. Since

(E})* =0 we haveE/ w = 0 so that
0 < (El'w, El'w)
= (w, E:LEZ"w)
=W+ B, f){w, w).
Thus (¥ + B8, B) = (¥, B) = 0 which is sufficient to prove the lemma. O
We have the corresponding result for type Il unitary modules
Lemma 2.Let V(A), A € D' be type Il unitary. Then
. <0  VYBed]  yell(p).

Proof. As mentioned earlier the two types of unitary modules are related by duality [10].
Thus if V(A) is type Il unitary the dual modul& (A)* = V(A*) is type | unitary. The
lemma then follows from the observation that the weight spectrum(af*) is the negative

of that of V(A). O

3. Atypicality indices for type | unitary irreps

Recall from [10] thatV (A) is a type | unitary module if and only ik € D* is real and
() (A+p,em—6,)>0

or
(i) (A+p,em—38,)=(A,6,—6,)=0

for some odd index.. In the first instanceA in necessarily typical whilst in the second
caseA is atypical. Let us define the set

Eo(A) ={1<i<m|(A+p,& —46,) =0 for some odd index;}.
We call the integer
ap = |Eo(A)]

the atypicality indexof A. Note that in the case wheh is typical, Eo(A) is the empty set
while in the caseA is atypical we have,, = u with p as in (ii) above. We thus see that
the atypicality index of a typical weight is zero. Also the maximal possible atypicality is
given byag = m A n wherea A b = min(a, b).

For A type | unitary the sefy(A) is easily characterized. From the above we have

O=WA+p,& _8vi)
= (A + 0, & _gm) + (A +p0,énm _81),”) + (A + p, Svm _Svi)
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which in turn gives
(A+p,8,, —6,)=—(A+p,e —&n) <0
Since A + p must be dominant we deduce that> v, implying (A, §,,, —$é,,) = 0. Thus

_(A +p0,8& — 5m) = (A + 0, 6vm - Svi)
= (107 81),,1 _8\),)
=Vn —V;

or
Vi =V +(A+p, 8 —&n). (9)

It thus follows that for each even indéxi € Eq if and only if the odd index; defined by
(9) satisfiesy; < n.
Throughout we let) be a weight satisfying

() (¥, =0 VB € ®f
(i) A+ € D", (10)

We aim to prove the following result on atypicality indices.
Proposition 1.1f A € D' is type | unitary andj satisfies (10) then
Ap+y < Ap.
([l

Obviously there is nothing to prove £ + ¢ is typical since them .y =0 < ax. So
we assume thah + v is atypical which also implies that is atypical. Otherwise, ifA is
typical and type | unitary we would have

(A+p+ws€m_8n)>(A+p»8m_8n)>o

forcing A + v to be typical contrary to our assumption.
For a givenA let u, denote the odd index,,; i.e.

(A+p,&nm _(SILA):O‘

Also letiyyy € Eo(A + ) be the largest atypical even index amd.., the corresponding
odd index such that

(A+p+1//18i[\+¢,_5u/\+¢,)=0 (A+,0+w,gj_5v)7éo
Vlgvgn, j>l.A+1/,.

For eachi < ipyy € Eo(A + ) we lety; be the unique odd index such that
(A+p+,e -6, =0.
Lemma 3.

() maty = pma
(II) Fori € Eo(A + V) Yi > HAa+y Vi < iA+1p~
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Proof. (i) By definition,
O = (A + 1Y + W7 giA+,/, - 5[LA+,4,)
Z(A+p, Einpy — CSHAH/)
=A+p 8, —&u)t(A+p,6m—38u)+ A+ 0,84, —Sury)
= (A + P, (SILA - 8#/\+,/,) < _(A + P, 8iA+V/ - Em) g 0

S0 thatua < uaty SinCEA + p is dominant.
(if) Now for i € Eo(A + ¥), i < irty, We have for odd indices

A+p+v,e—=8)=A+p+V, &6 —e, )+t A+p+¥,8,,, —Su,)
+(A+;0+K[f, SMAW _81))
>A+p+Y, 8/LA+1{/ —68,) 20 for v < pasy-
Thus
(A+p+Y,e—38,) =0=yi > piayy.

We are now in a position to prove proposition 1. It suffices to show
Eo(A + ¢) € Eo(A).
Hence supposée Eo(A + ) so thati < is.y and
(A+p+y.6—5,)=0
with y; = uaqy fori =ixsy. Then
O=(A+p+y.6—35,)
Z (A+p, e —38y)
=A+p,ei—en)+A+p,8n—8,,)+ A+ p,08,, —6,).

Since from lemma 3 we havg > uaty > pa, then(a, s, —8,) = 0 from which we
deduce

0> A+p,6 —en)+ (0,8, —8,)=UN+p,6 —&n)+ua—yi
=>nz2y, 2 (A+p,8 —&y)+ s =y
This in turn implies thai € Eq(A); i.e.
i€ Eo(A+v)=ieEoy(A)

which is sufficient to prove the proposition.
Given irreducible type | unitary modulég(A), V (u) consider the following direct sum
decomposition into type | unitary irreducible submodules:

V) @V =@m v

with m, the multiplicity of the moduleV (v). The weightsy are necessarily of the form
v=p+y e Dt ¥ e TI(A).

In view of lemma 1, satisfies the conditions of (10) so that from proposition 1
ay, = auyy < (@ Aap).

The above shows that the highest weights occurring in the tensor product of two type |
unitary irreps have an atypicality index less than or equal to the atypicality index of either
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component. In other words the process of taking tensor products can never lead to an
increase in atypicality index. Thus for a fixed intedee Z., k < (m A n), we can refer

to the category’, of type | unitary irreps with atypicality index less than or equaktand

their direct sums. We clearly have the inclusions

CoCClC"'CC:C(m/\n)

where(y is the category of typical type | unitary irreps addthe full category of type |
unitary irreps. We have thus proved the following.

Proposition 2.The categonf; is closed under tensor products with arbitrary type | unitary
irreps.

An interesting consequence of the above proposition is that the tensor product of a
typical type | unitary irrep with an arbitrary type | unitary irrep must decompose into a
direct sum of typical unitary irreps.

4. Extension to type Il unitary irreps

Now we will prove that the result of proposition 1 also holds whem), V(w) are both
type Il unitary modules. Clearly the argument goes through unchanged if we can establish
the result

Auiy < Ay for € TI(A).
We assume thah € D' andv is a weight satisfying
() (W.p)<0  VBedf
(i) A+ € DT. (11)
It suffices to prove the following extension of proposition 1.
Proposition 3.1f A € D% is type Il unitary andyr satisfies (11) then
Arty < Ap.
(I
In this case it is convenient to concentrate on the odd indices. We define the set
E1(A) ={1<v<n|(A+p, e, —35,) =0 for some even indek,}

so thata, = |E1(A)|. For the case of\ being type Il unitary this set may be characterized
as follows. We first recall the classification scheme for type Il unitary modules. For real
A € DY, V(A) is type Il unitary if and only if

() (A+p,e1—681) <0 or

(i) (A+p,8i—8)=(A,e1—6)=0
for some even index. In the first caseA is necessarily typical whilst in the second case
A is atypical.

Obviously if A is typical the setE1(A) is empty. If A is atypical and type Il unitary,

let i, be the even index such that

(A+p,e, —81) = (A, e1—¢;,) =0.
Following the procedure employed to obtain (9), it is straightforward to show for a given
odd indexv, thatv € E;(A) if and only if i, > 0 where

iy =in+ (A +p,81—3,). (12)
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We now assume that is type Il unitary andy satisfies (11). Obviously proposition 3
holds if A + v is typical so we assuma + i to be atypical. We see that this impliés
is typical otherwise

A+p+v,e1—01)<(A+p,e10—-61) <0

forcing A + v to be typical, contrary to our choice df + . We letvayy € E1(A + V)
be the smallest atypical odd index and., the corresponding even index so that

A+p+ e, —8,,) =0 (A+p+y.6—8)#0
Vi< j<<m, v<vppy.
For eachw € E1(A + V), v > vayy, letk, be the unique even index such that
A+p+v, e, —6,)=0.
We have the following analogue of lemma 3.
Lemma 4.
(1) iary <ia
(i) for v € E1(A + ) ky <ipty YV > Vpty.
Proof. (i) We have
O=A+p+V.8,, —d,,)
S(A+p, 80, —6u,)
=A+p 8, —€) A +pe, —8)+(A+p,51—6,,,)
= (A+p, 8, —&,)=2AM+p,8,,—0)20

so thatiy,y < ia sinceA + p is dominant.
(i) For v € E1(A + ), v > va1y, We have for indices

A+p+v,e—8)=A+p+ ¥, 6 —e, )+ A+p+v,8,,, —bu.,,)
+A+p+ 9,68, —6)
<(A+,0+¢,8,'—8,‘A+,/,)<0 fOI’i}iAH,.
Therefore
A+p+v, 60, —8,) =0k, <ippy.

To prove proposition 3, we now supposes E1(A + ) so thatv > v, and
A+p+,e,—6)=0
with k, = ix+y Whenv =vay. Then
O=(A+p+v, e, —3d)
< (A+p, e, —98))
=A+p, e, —8,)+A+p,8, —061)+(A+p,01—3,).
Sincek, < iaqy <
Oin—k+(A+p,d1—8) =i, =in+(A+p,81—8,) 2k, 20

indicatingv € E1(A) which is sufficient to prove the proposition.
The following analogue of proposition 2 is then deduced.

ir, We have(A, g, — ¢;,) = 0 which in turn gives
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Proposition 4.Let C; denote the category of type Il unitary irreps with atypicality index less
than or equal td and their direct sums. The categdfy is closed under tensor products
with arbitrary type Il unitary irreps.

To conclude this section it is worth emphasizing that whilst propositions 1 and 3 hold
for unitary irreps of the came type, a general result for atypicality indices of tensor product
modules does not exist. To see this consider the tensor préduct® V (A)* for arbitrary
A € DT. The trivial (one-dimensional) module occurs in the above tensor product but has
maximum atypicality indexg = m A n.

5. Eigenvalue formula for unitary irreps

In this section we will use the results of propositions 1 and 3 to derive an alternative
expression to (8) for the eigenvalues of the Casimir invariants (7) when acting on unitary
modules V(r). Our only assumption is that the reference representatioa m, of
theorem 1 is also unitary and of the same typeras

Throughout we letV°(A) denote theU, (gl(m) & gl(n)) = U,(gl(m)) @ U,(gl(n))
module with highest weight\. The following result is contained in [15].

Theorem 3. Consider thel,(gl(m)) ® U, (gl(n))-module decomposition

V(8)® Vo) = Pmvow)

wherem, denotes the multiplicity of the modulé®(v) occurring in the decomposition. If
w, v are all typical weights, we then have tbg(g/(m|n)) decomposition

V(A ®V(n) = @va(U).

The eigenvalues of the invariants (with = = 7r,) on the moduleV (1) are given by

XM(C]) = Z(_l)[v]mv[ﬁv(ﬂ)]l l_[ [(V + 0, Ol)]q l_[ [(,bL +p, oz)]q
v q)+

[([,L+p,0{)]q aed] [(V‘|’Io’05)]q

T
aedg

where nowg, (1) is given by

_ q(A,A+2p)+(M,u+2p)—(v,V+2p)

ﬂ\)(/"l’) = q _C]il

and p] denotes the degree 6f°(v) C V(A) @ VO(w). O

Note that since the weightsare all typical the above expression is always well defined.
For eachu € DT, define the set

O (u) = {a € DT (1 + p, @) # 0}
so that|®] (u)| + a, = |®]|. We wish to prove the following.

Proposition 5.Let the reference modulg(A) be a unitary module. The eigenvalues of the
Casimir invariantsC;, on a unitary modulé/ () of the same type, are given by

[(\) + 0, Ol)]q Hae@r(u)[(,u“ + 0, O5)](]
[(M + o, a)]q Haecbf(v)[(v + P, a)]q .

x@ =Y 0Mm[Bw] []

{vlay=a,) wedy
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Proof. Note that the above formula is well defined for all unitarye D*. To see how it
arises consider the one-parameter family of finite dimensional modules

Vin+ys) 5= "6,
n=1

so that(s, @) = 1,Va € ®F. If n is type | (resp. type Il) unitary, thep + y§ must be
typical for 0< y < 1 (resp. 0> y > —1). For each respective case we hereafter restrict
to this range. Consider the following decomposition withy unitary of the same type

V(&) ® VO(u+y8) = Pm, VO +y6).
Since thev + y§ are necessarily all typical, we have from theorem 3
Kt (C) = Y (=DM [Byys (e + )]

o l—[ [(V+po+yd o], l—[ [(L+p+ys8 ),

. 13
wewy Lt Fy8 ]y f o [+ p+ys ] 49
Now
[[lw+o+vs.mly= [] lw+po+vswly [] (s o]
aed; aed} (w) agdf ()
=1e [] lw+p+vys ),
aed] (u)
so in particular
5 ap—a, 1la [(L+p+yd)]
1_[ [(M + p + V ’a)](/ — [y]q,1 v l_[ E‘bir(llv) q (14)

[V +o+vys o), [Tocorml+p+ys 0],

ae¢f
Taking the limity — 0, V(u + y8) reduces to the Kac modulg(x) [8] which has the
same infinitesimal character &(w). This in turn implies that
Xu(Cp) = liLnO Xu+ys (Cp).

From propositions 1 and 3, we have established that- @, > 0 so that (14) is well
defined in the limity — 0 and gives a non-zero contribution if and onlyjf = a,. Thus
substituting (14) into (13) and taking the limit — 0O yields proposition 5. O

6. Link polynomials

The above eigenvalue formula plays an important role in the determination of link
polynomials arising from unitary irreps @f, (gl (m|n)). In this section we will discuss this
application. We recall that the braid grody is generated by elementla,-}lf‘;ll satisfying

bﬂﬁ Zijbi U'—_ﬂ >1
bibiy1b; = b;11b;b; 1.
From the Yang—Baxter equation (5), representations of the braid group are obtainable
in the following way. Choose a fixed homogeneous basisWfon) (assumed unitary

throughout), sayv,}?_; and let ] € Z, denote the degree of the basis veatpr On the
tensor product modul& (A) ® V(A) we define the graded permutation operakoby

P(vy ® vg) = (—l)[“][ﬂ]vﬁ ® v,
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and set
o= q(A‘A’LZp)P(JTA Q@ TA)R.

Theno satisfies (cf (3) and (5))

[0, (ma ® TA)A(a)] =0 (15)
and
I®o) o DNU®o)=(0RNHIR0)(0QI). (16)
If we consider the:th rank tensor product space
V"=V (A)®"

we obtain al,(g) module with representation defined by
&A™ (a)) Va € U,(g)

where A®™ is defined recursively by
A® = (A @ [B=D)An-D) A@ — A

It follows from equation (16) that the operatars ol.‘l € End(V") defined by

0‘i:I:l — I®(i—1) ®o_i1 ® 1®(n—i—l)

give rise to a representation of the braid gra®p We have the following result from [20]:

Theorem 4 Define
tr @ st D[ [A™ (g2)6]]
trwa (g?)

¢(©0) =

whered € B, is a word in the generatorsﬂ, 1<i <n-1, and tr and str denote the trace
and supertrace respectively. Thergualifies as a Markov trace satisfying the following:

(i) ¢On) =91o) VO, n € By
(i) ¢(B0,—1) =29 (0)
¢00, ") =76 (9) V6 € B,_1 C B,
with

A\l
Il
Ia\ll
|
=

O

Let # denote the link obtained by closing the braict B,. A function L(9) defines a
link polynominal if it satisfies
() LOm =L@O)  Vo.n€ B,
(i) L(Oo,_1) = L@, ) = L@ VO € B, 1 C B,.

It is known that given any Markov tracg(6), thenL(9) defined by

z

1e(0)
L@) = (z7)"2" D (z) $©O)  0€B,

wheree(0) is the sum of the exponents of thgs appearing ird, defines a link polynominal
[21].
For the Markov tracep () defined by theorem 1 we have
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Corollary 1. L(6) defined by
LO) =¢®)  6eB,
defines a link polynominal. O
In view of (15) and theorem 1 it is clear that the operators
e = (StrD)(a(g?) ® Io* keZ

are invariant operators and thus act as scalar multiples of the identity(an. We let ¢,
denote the eigenvalue of on V(A). It is straightforward to show the following:

Theorem 5.For a braidd € B, of the form
0 = (0, (o1,)%2 ... (07, )l ki €Z (17)

with (iy, io, ...i,—1) an arbitrary permutation ofl, 2, ..., n — 1), the corresponding link
polynomial is given by

n—1
LO) =]].
i=1

Let us now assume that the tensor product is multiplicity free; i.e.

V(A ®@V(A) =P V).

In such a case powers of the braid generator are given by the expression [22]
ok = q2k(A,A+Zp) ngq%k(v,\H-Zp)Pv
v

where P, denotes the central projection orit@v) ande, is the eigenvalue of thé,-graded
permutation operatoP on V (v) in the limit ¢ — 1. If we definen, to be the eigenvalues
of the invariant operators

(Sr@)(ma(g?) @ D P, (18)

we may write

2k(A,A+2p) Z EVC]_k/Z(U"H_Zp)

v

k=4q Ny.

However theP, may be expressed [20]

T A= Bu(N)
P=|]-——r
l!;[lﬂ ﬁv(A) - ,Bu(A)

which is a polynomial inA: here the prime signifies product over ttistinct eigenvalues

of A in the set{8,(A)} as defined in theorem 3. Thus the invariants (18) are a polynomial
function of the invariant<; so the quantities;, and in turng, may be evaluated using
proposition 5.
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7. Example

In order to illustrate the theory we have developed we will now apply our results to the
evaluation of link polynomials associated with the rdrdéymmetric irreps otU, (gl (m|n))
which are type | unitary. Link polynomials obtained through use of the vector irreps
(corresponding to the rank 1 case) give particular cases of the HOMFLY invariants as
discussed in [22].

The rank! symmetric irrep has the highest weight;. It admits the following
U,(gl(m) @ gl(n)) decomposition

Inn
Ve = @ VO —ker+ 81+ +8)
k=0

from which we deduce the tensor product decomposition

IAn

Ve @ Vole = @ VO

k=0 p<l—k/2
with
vk = (2 — p—k)e1 + peo+ 81+ + 5.
For 0< y < 1 we have thdJ/,(gl(m|n)) decomposition

IAn

Ve @ Vier+v) =P P Vo +rd).
k=0 p<i—k/2

In [12] all the unitary irreps with maximal atypicality index were classified for
U,(gl(m|n)). Assumingm > n 4+ 1 we may deduce from these results that

a,, = a, if and only if k = 0.

Using the fact that
(50, vp0 + 20) = (2 — p)* + p® = 2p + 2(m —n — 1)
(ler, ler +2p) =P +1(m —n —1)

it is then a matter of applying proposition 5 to yield

k
pn(Coy = Y (Lm0 R 2p 1 R p i il
o g—q! [+ 1], 1 [i1,00 +i + 1],

(19)

p=0
To determine the braid generator we observe the decomposition

l

V(ler) ® V(le) = @DV (vy0)
p=0

from which we obtain
]
O_k — qk(lz+l(111—n—l)) Z(_1)pq—k(212—21p+p2—p+l(m—n—l)) PV,,o'
p=0
Using (19) and some elementary techniques of linear algebra we deduce

_— 20 —2p+1), "5 22l — p+i+1,[p +il,
vp0 [1+1], i—1 [il 1 +i+ 1],
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Finally, for a braid of the form (17) we can explicitly give the associated link polynomial
by the formula

n—1
LO) =[]
i=1
where

1
k(P (m—n—1 —k (22— 2lp+p®— p-+H(m—n—1
o = gk Hm=—n=1) Z(_l)pq ( p+p*—pH(m—n ))vacy

p=0
8. Conclusion

In this paper we have derived a well defined eigenvalue formula for Casimir invariants of

U, (gl(m|n)) when acting on unitary modules. This formula was obtained in essence through

the observation that the categories of unitary modules of fixed type with given atypicality

index are closed under tensor products with arbitrary unitary modules of the same type.
Our results allow the eigenvalues to be calculated in a simpler fashion than using the more
general result developed previously [14,15]. As an application of our results we have

calculated new link polynomials associated with the rasigmmetric irreps fom > n + 1.
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