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Abstract. A fully explicit formula for the eigenvalues of Casimir invariants forUq(gl(m|n))
is given which applies to all unitary irreps. This is achieved by making some interesting
observations on atypicality indices for irreps occurring in the tensor product of unitary irreps of
the same type. These results have applications in the determination of link polynomials arising
from unitary irreps ofUq(gl(m|n)).

1. Introduction

The study ofZ2-graded or supersymmetric quantum algebras has generated substantial
interest recently. Primarily this has been due to their role in solving the Yang–Baxter
equation and generating associated integrable models through the quantum inverse scattering
method (QISM). Since supersymmetric algebras accommodate both bosonic and fermionic
degrees of freedom, such models may be interpreted as describing systems of interacting
fermions and specifically correlated electrons. The approach first appeared in the work on the
supersymmetrict–J model [1]. Subsequently the supersymmetric extended Hubbard model
[2] and the supersymmetricU model [3] were formulated using QISM. Theq-deformed
analogues of the above models are discussed in [4, 5]. In fact on the open chain these
models acquire quantum supersymmetry for a particular choice of boundary conditions [5].
Models derived in the context of supersymmetric realizations of the Temperley–Lieb algebra
are described in [6] while the case of the Birman–Wenzl–Murakami algebra(osp(m|2n)
invariant) can be found in [7].

In order to gain an understanding of these models it is necessary to develop the
representation theory of the underlying symmetry algebras. For the type I quantum
superalgebras consisting ofUq(gl(m|n)) andUq(osp(2|2n)) rapid and significant progress
has been made. A description of the finite dimensional irreducible representations (irreps)
in terms of the induced module construction has been developed [8, 9], all the unitary irreps
have been classified [10, 11], theq-superdimensions of quasi-typical irreps are known [12]
and the matrix elements of theUq(gl(m|n)) generators in essentially typical representations
have been given [13].

Recently, a formula for the eigenvalues of the Casimir invariants for the type I quantum
superalgebras has been derived [14, 15] when acting on irreducible highest-weight modules.
However, the formula may sometimes prove difficult to use when applied to some irreps,
as seen below. The aim of this paper is to illustrate that when restricted to unitary irreps of
Uq(gl(m|n)) these difficulties may be overcome by applying certain results on the atypicality
indices for irreps occurring in the tensor product of unitary irreps of the same type. This
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approach permits us to give explicit formulae for the eigenvalues of the Casimir invariants.
An important application of this result is in the evaluation of link polynomials as we will
illustrate.

2. Fundamentals

Let g denote a basic classical Lie superalgebra of rankl + 1 with usual generators
{ei, fi, hi}li=0. Let {αi}li=0 be the distinguish set of simple roots ofg in the sense of Kac
[16] and let( , ) be a fixed invariant bilinear form onH ∗, the dual of the Cartan subalgebra
H of g. We also let8+ = 8+0 ∪ 8+1 denote the full set of roots with8+0 (resp.8+1 ) the
subset of even (resp. odd) roots. Throughout, we adopt the convention thatα0 denotes the
unique odd simple root. Associated withg one can define the quantum superalgebraUq(g)

which has the structure of aZ2-graded quasi-triangular Hopf algebra [17]. We will not give
the full defining relations ofUq(g) here. We note, however, thatUq(g) has a co-product
structure given by

1(q±
1
2hi ) = q± 1

2hi ⊗ q± 1
2hi 1(x) = x ⊗ q− 1

2hi + q 1
2hi ⊗ x x = ei, fi

which is extended to an algebra homomorphism to all ofUq(g) in the usual way. It is
important to point out that the multiplication rule for the tensor product is defined for
homogeneous elementsa, b, c, d,∈ Uq(g) by

(a ⊗ b)(c ⊗ d) = (−1)[b][c](ac ⊗ bd) (1)

and extended linearly to all ofUq(g) ⊗ Uq(g). Here [a] ∈ Z2 denotes the degree of the
homogeneous elementa ∈ Uq(g), which is defined for the elementary generators by

[hi ] = 0 [ei ] = [fi ] ≡ [i] = δi0 ∀06 i 6 l
and extended to all homogeneous elements ofUq(g) through

[ab] = [a] + [b](mod 2) ∀a, b ∈ Uq(g).
The twist mapT : Uq(g)⊗ Uq(g)→ Uq(g)⊗ Uq(g) is defined by

T (a ⊗ b) = (−1)[a][b]b ⊗ a (2)

for all homogeneousa, b ∈ Uq(g): we set1̄ = T1. There exists a canonical element
R ∈ Uq(g)⊗Uq(g) called the universalR-matrix which is even and invertible and satisfies
the following well known relations

R1(a) = 1̄(a)R ∀a ∈ Uq(g) (3)

(1⊗ I )R = R13R23 (I ⊗1)R = R13R12 (4)

where we have adopted the conventional notation. From equations (3) and (4) it follows
that the universalR-matrix satisfies theZ2-graded Yang–Baxter equation

R12R13R23 = R23R13R12. (5)

We emphasize that multiplication of the tensor products is to obey equation (1).
Let ρ ∈ H ∗ denote the graded half sum of positive roots ofg and lethρ denote the

unique element ofH defined byαi(hρ) = (ρ, αi), ∀αi ∈ H ∗. We recall from [18] the
following result.
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Theorem 1.Let π be a fixed, but arbitrary, finite dimensional representation ofUq(g) with
representation spaceV and set

1π = (π ⊗ I )1.
If w ∈ Uq(g)⊗ EndV satisfies

1π(a)w = w1π(a) ∀a ∈ Uq(g) (6)

then

sτq(w) = (str⊗I )(π(q2hρ )⊗ I )w
belongs to the centre ofUq(g), where str denotes the supertrace. �

Theorem 1 enables a family of Casimir invariants to be constructed forUq(g) utilizing
the universalR-matrix for any reference moduleV . DefiningRT = T R, it is clear from
(3) that

RTR1(a) = 1(a)RT R ∀a ∈ Uq(g).
Setting

A = (q − q−1)−1(π ⊗ I )(I ⊗ I − RTR)
thenAl, l ∈ Z+, satisfies (6). We thus obtain the family of Casimir invariants

Cl = sτq(Al). (7)

The above discussion applies to all quantum superalgebras. Hereafter we will restrict our
focus toUq(gl(m|n)). For the full defining relations forUq(gl(m|n)) we refer to [19].

Let V (µ) denote a finite dimensional irreducibleUq(g) module of highest weight
µ ∈ D+ whereD+ ⊂ H ∗ is the set of dominant weights, and letπµ denote the representation
afforded byV (µ). For the quantum superalgebraUq(gl(m|n)), µ ∈ D+ if and only if

2(µ, αi)

(αi, αi)
∈ Z+ 16 i 6 l

while (µ, α0) can take arbitrary complex values [8]. When acting onV (µ) the invariants
Cl act as scalar multiples of the identity operator (Schur’s lemma), which we denote by
χµ(Cl). From [14, 15] we have the following result.

Theorem 2.Let λi denote the distinct weights in the reference moduleV with multiplicities
mi and [λi ] the degree ofλi . The eigenvalues of the Casimir invariants (7) acting on the
irreducible moduleV (µ) are given by

χµ(Cl) =
∑
i

(−1)[λi ]mi [βi(µ)]
l
∏
α∈8+0

[(µ+ λi + ρ, α)]q
[(µ+ ρ, α)]q

∏
α∈8+1

[(µ+ ρ, α)]q
[(µ+ λi + ρ, α)]q (8)

where

βi(µ) = 1− q−(λi ,λi+2µ+2ρ)+(3,3+2ρ)

q − q−1

and

[x]q = qx − q−x
q − q−1

.

�
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Recall [8] that forUq(gl(m|n)) we sayµ ∈ H ∗ is typical if

(µ+ ρ, α) 6= 0 ∀α ∈ 8+1
andatypical otherwise. It is apparent that the above eigenvalue formula is not well defined
for thoseµ such thatµ + λi is atypical for someλi . However, in principle (8) is a
polynomial function ofq±(µ,α), α ∈ 8+ so the right-hand expression may be expanded.
This unfortunately proves to be technically difficult (e.g. see [15]). We wish to illustrate
that in the case of3 andµ being unitary of the same type, one may obtain an alternative
simple expression forχµ(Cl) which is always well defined.

Next we will briefly describe the unitary irreps. A more detailed discussion may be
found in [10]. Define a dagger operation on theUq(gl(m|n)) generators through

(ei)
† = fi (fi)

† = ei (hi)
† = hi.

This operation is extended to all ofUq(gl(m|n)) by

(ab)† = b†a† ∀a, b ∈ Uq(gl(m|n)).
There are two types of unitary representations whichUq(gl(m|n)) admits. We say that3,
π3, V (3) are type I unitary if

π3(a
†) = π3(a)†

and type II unitary if

π3(a
†) = (−1)[a]π3(a)

†

where the dagger operation for matrices denotes (non-graded) Hermitian matrix conjugation.
For each unitary irrep there exists a positive definite invariant sesquilinear form which
we denote〈 , 〉. These representations have the property that the tensor product of two
representations of the same type reduces completely into representations also of the same
type. The two types of unitary representations are in fact related by duality [10].

Throughout we choose the basis{εi}mi=1 ∪ {δν}nv=1 for the dual of the Cartan subalgebra
H ∗ equipped with the invariant bilinear form

(εi, εj ) = δij (δµ, δν) = −δµν (εi, δµ) = 0 ∀16 i, j 6 m, 16 µ, ν 6 n.

In terms of this basis we have the sets of even and odd positive roots given by

8+0 = {εi − εj |16 i < j 6 m} ∪ {δµ − δν |16 µ < ν 6 n}
8+1 = {εi − δν |16 i 6 m, 16 ν 6 n}

and theZ2-graded half sum of positive roots is expressed as

ρ = 1
2

m∑
i=1

(m− n− 2i + 1)εi + 1
2

n∑
µ=1

(m+ n− 2µ+ 1)δµ.

Given an irreducible moduleV (3),3 ∈ D+, we let5(3) denote the weight spectrum
of V (3). For later use we have the following technical results.

Lemma 1.Let V (3),3 ∈ D+ be type I unitary. Then

(ψ, β) > 0 ∀β ∈ 8+1 ψ ∈ 5(3).
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Proof. It suffices to consider the classical(q → 1) case only. Letvψ 6= 0 be a weight
vector ofV (3) with weight ψ . For β = εi − δµ ∈ 8+1 we have two possibilities; either
Eiµvψ = 0 orEiµvψ 6= 0 whereEiµ denotes the standardgl(m|n) generator of weightεi−δµ
under the adjoint action. In the former case we have, sinceV (3) is type I unitary,

06 〈Eµi νψ,Eµi νψ 〉
= 〈vψ,EiµEµi vψ 〉
= (ψ, εi − δµ)〈vψ, vψ 〉

where we have used the relationEiµE
µ

i +Eµi Eiµ = Eii +Eµµ . Since the form〈 , 〉 is positive
definite we immediately see that(ψ, β) > 0.

In the latter case setw = Eiµvψ so thatw is the weight vector of weightψ + β. Since
(Eiµ)

2 = 0 we haveEiµw = 0 so that

06 〈Eµi w,Eµi w〉
= 〈w,EiµEµi w〉
= (ψ + β, β)〈w,w〉.

Thus(ψ + β, β) = (ψ, β) > 0 which is sufficient to prove the lemma. �
We have the corresponding result for type II unitary modules

Lemma 2.Let V (3),3 ∈ D+ be type II unitary. Then

(ψ, β) 6 0 ∀β ∈ 8+1 ψ ∈ 5(3).
Proof. As mentioned earlier the two types of unitary modules are related by duality [10].
Thus if V (3) is type II unitary the dual moduleV (3)∗ = V (3∗) is type I unitary. The
lemma then follows from the observation that the weight spectrum ofV (3∗) is the negative
of that ofV (3). �

3. Atypicality indices for type I unitary irreps

Recall from [10] thatV (3) is a type I unitary module if and only if3 ∈ D+ is real and

(i) (3+ ρ, εm − δn) > 0

or

(ii) (3+ ρ, εm − δµ) = (3, δµ − δn) = 0

for some odd indexµ. In the first instance3 in necessarily typical whilst in the second
case3 is atypical. Let us define the set

E0(3) = {16 i 6 m|(3+ ρ, εi − δνi ) = 0 for some odd indexνi}.
We call the integer

a3 = |E0(3)|
the atypicality indexof 3. Note that in the case when3 is typical,E0(3) is the empty set
while in the case3 is atypical we haveνm = µ with µ as in (ii) above. We thus see that
the atypicality index of a typical weight is zero. Also the maximal possible atypicality is
given bya0 = m ∧ n wherea ∧ b = min(a, b).

For3 type I unitary the setE0(3) is easily characterized. From the above we have

0= (3+ ρ, εi − δνi )
= (3+ ρ, εi − εm)+ (3+ ρ, εm − δνm)+ (3+ ρ, δνm − δνi )
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which in turn gives

(3+ ρ, δνm − δνi ) = −(3+ ρ, εi − εm) 6 0.

Since3+ ρ must be dominant we deduce thatνi > νm implying (3, δνm − δνi ) = 0. Thus

−(3+ ρ, εi − εm) = (3+ ρ, δνm − δνi )
= (ρ, δνm − δνi )
= νm − νi

or

νi = νm + (3+ ρ, εi − εm). (9)

It thus follows that for each even indexi, i ∈ E0 if and only if the odd indexνi defined by
(9) satisfiesνi 6 n.

Throughout we letψ be a weight satisfying

(i) (ψ, β) > 0 ∀β ∈ 8+1
(ii) 3+ ψ ∈ D+. (10)

We aim to prove the following result on atypicality indices.

Proposition 1.If 3 ∈ D+ is type I unitary andψ satisfies (10) then

a3+ψ 6 a3.

�

Obviously there is nothing to prove if3+ψ is typical since thena3+ψ = 06 a3. So
we assume that3+ψ is atypical which also implies that3 is atypical. Otherwise, if3 is
typical and type I unitary we would have

(3+ ρ + ψ, εm − δn) > (3+ ρ, εm − δn) > 0

forcing3+ ψ to be typical contrary to our assumption.
For a given3 let µ3 denote the odd indexνm; i.e.

(3+ ρ, εm − δµ3) = 0.

Also let i3+ψ ∈ E0(3+ψ) be the largest atypical even index andµ3+ψ the corresponding
odd index such that

(3+ ρ + ψ, εi3+ψ − δµ3+ψ ) = 0 (3+ ρ + ψ, εj − δν) 6= 0

∀16 ν 6 n, j > i3+ψ.

For eachi < i3+ψ ∈ E0(3+ ψ) we let γi be the unique odd index such that

(3+ ρ + ψ, εi − δγi ) = 0.

Lemma 3.

(i) µ3+ψ > µ3
(ii) For i ∈ E0(3+ ψ) γi > µ3+ψ ∀i < i3+ψ.
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Proof. (i) By definition,

0= (3+ ρ + ψ, εi3+ψ − δµ3+ψ )
> (3+ ρ, εi3+ψ − δµ3+ψ )
= (3+ ρ, εi3+ψ − εm)+ (3+ ρ, εm − δµ3)+ (3+ ρ, δµ3 − δµ3+ψ )
⇒ (3+ ρ, δµ3 − δµ3+ψ ) 6 −(3+ ρ, εi3+ψ − εm) 6 0

so thatµ3 6 µ3+ψ since3+ ρ is dominant.
(ii) Now for i ∈ E0(3+ ψ), i < i3+ψ , we have for odd indicesν

(3+ ρ + ψ, εi − δν) = (3+ ρ + ψ, εi − εi3+ψ )+ (3+ ρ + ψ, εi3+ψ − δµ3+ψ )
+(3+ ρ + ψ, δµ3+ψ − δν)

> (3+ ρ + ψ, δµ3+ψ − δν) > 0 for ν 6 µ3+ψ.
Thus

(3+ ρ + ψ, εi − δγi ) = 0⇒ γi > µ3+ψ.

�
We are now in a position to prove proposition 1. It suffices to show

E0(3+ ψ) ⊆ E0(3).

Hence supposei ∈ E0(3+ ψ) so thati 6 i3+ψ and

(3+ ρ + ψ, εi − δγi ) = 0

with γi ≡ µ3+ψ for i = i3+ψ . Then

0= (3+ ρ + ψ, εi − δγi )
> (3+ ρ, εi − δγi )
= (3+ ρ, εi − εm)+ (3+ ρ, εm − δµ3)+ (3+ ρ, δµ3 − δγi ).

Since from lemma 3 we haveγi > µ3+ψ > µ3, then (3, δµ3 − δγi ) = 0 from which we
deduce

0> (3+ ρ, εi − εm)+ (ρ, δµ3 − δγi ) = (3+ ρ, εi − εm)+ µ3 − γi
⇒ n > γi > (3+ ρ, εi − εm)+ µ3 ≡ νi.

This in turn implies thati ∈ E0(3); i.e.

i ∈ E0(3+ ψ)⇒ i ∈ E0(3)

which is sufficient to prove the proposition.
Given irreducible type I unitary modulesV (3), V (µ) consider the following direct sum

decomposition into type I unitary irreducible submodules:

V (3)⊗ V (µ) =
⊕
ν

mνV (ν)

with mν the multiplicity of the moduleV (ν). The weightsν are necessarily of the form

ν = µ+ ψ ∈ D+ ψ ∈ 5(3).
In view of lemma 1,ψ satisfies the conditions of (10) so that from proposition 1

aν = aµ+ψ 6 (aµ ∧ a3).
The above shows that the highest weights occurring in the tensor product of two type I
unitary irreps have an atypicality index less than or equal to the atypicality index of either
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component. In other words the process of taking tensor products can never lead to an
increase in atypicality index. Thus for a fixed integerk ∈ Z+, k 6 (m ∧ n), we can refer
to the categoryCk of type I unitary irreps with atypicality index less than or equal tok and
their direct sums. We clearly have the inclusions

C0 ⊂ C1 ⊂ · · · ⊂ C = C(m∧n)
whereC0 is the category of typical type I unitary irreps andC the full category of type I
unitary irreps. We have thus proved the following.

Proposition 2.The categoryCk is closed under tensor products with arbitrary type I unitary
irreps.

An interesting consequence of the above proposition is that the tensor product of a
typical type I unitary irrep with an arbitrary type I unitary irrep must decompose into a
direct sum of typical unitary irreps.

4. Extension to type II unitary irreps

Now we will prove that the result of proposition 1 also holds whenV (3), V (µ) are both
type II unitary modules. Clearly the argument goes through unchanged if we can establish
the result

aµ+ψ 6 aµ for ψ ∈ 5(3).
We assume that3 ∈ D+ andψ is a weight satisfying

(i) (ψ, β) 6 0 ∀β ∈ 8+1
(ii) 3+ ψ ∈ D+. (11)

It suffices to prove the following extension of proposition 1.

Proposition 3.If 3 ∈ D+ is type II unitary andψ satisfies (11) then

a3+ψ 6 a3.
�

In this case it is convenient to concentrate on the odd indices. We define the set

E1(3) = {16 ν 6 n|(3+ ρ, εiν − δν) = 0 for some even indexiν}
so thata3 = |E1(3)|. For the case of3 being type II unitary this set may be characterized
as follows. We first recall the classification scheme for type II unitary modules. For real
3 ∈ D+, V (3) is type II unitary if and only if

(i) (3+ ρ, ε1− δ1) < 0 or

(ii) (3+ ρ, εi − δ1) = (3, ε1− εi) = 0

for some even indexi. In the first case3 is necessarily typical whilst in the second case
3 is atypical.

Obviously if3 is typical the setE1(3) is empty. If3 is atypical and type II unitary,
let i3 be the even index such that

(3+ ρ, εi3 − δ1) = (3, ε1− εi3) = 0.

Following the procedure employed to obtain (9), it is straightforward to show for a given
odd indexν, thatν ∈ E1(3) if and only if iν > 0 where

iν = i3 + (3+ ρ, δ1− δν). (12)
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We now assume that3 is type II unitary andψ satisfies (11). Obviously proposition 3
holds if3+ ψ is typical so we assume3+ ψ to be atypical. We see that this implies3
is typical otherwise

(3+ ρ + ψ, ε1− δ1) 6 (3+ ρ, ε1− δ1) < 0

forcing3+ ψ to be typical, contrary to our choice of3+ ψ . We letν3+ψ ∈ E1(3+ ψ)
be the smallest atypical odd index andi3+ψ the corresponding even index so that

(3+ ρ + ψ, εi3+ψ − δν3+ψ ) = 0 (3+ ρ + ψ, εj − δν) 6= 0

∀16 j 6 m, ν < ν3+ψ.

For eachν ∈ E1(3+ ψ), ν > ν3+ψ , let kν be the unique even index such that

(3+ ρ + ψ, εkν − δν) = 0.

We have the following analogue of lemma 3.

Lemma 4.

(i) i3+ψ 6 i3
(ii) for ν ∈ E1(3+ ψ) kν < i3+ψ ∀ν > ν3+ψ.

Proof. (i) We have

0= (3+ ρ + ψ, εi3+ψ − δν3+ψ )
6 (3+ ρ, εi3+ψ − δν3+ψ )
= (3+ ρ, εi3+ψ − εi3)+ (3+ ρ, εi3 − δ1)+ (3+ ρ, δ1− δν3+ψ )
⇒ (3+ ρ, εi3+ψ − εi3) > (3+ ρ, δν3+ψ − δ1) > 0

so thati3+ψ 6 i3 since3+ ρ is dominant.
(ii) For ν ∈ E1(3+ ψ), ν > ν3+ψ , we have for indicesi

(3+ ρ + ψ, εi − δν) = (3+ ρ + ψ, εi − εi3+ψ )+ (3+ ρ + ψ, εi3+ψ − δν3+ψ )
+(3+ ρ + ψ, δν3+ψ − δν)

< (3+ ρ + ψ, εi − εi3+ψ) 6 0 for i > i3+ψ.
Therefore

(3+ ρ + ψ, εkν − δν) = 0⇒ kν < i3+ψ.

�
To prove proposition 3, we now supposeν ∈ E1(3+ ψ) so thatν > ν3+ψ and

(3+ ρ + ψ, εkν − δν) = 0

with kν = i3+ψ whenν = ν3+ψ . Then

0= (3+ ρ + ψ, εkν − δν)
6 (3+ ρ, εkν − δν)
= (3+ ρ, εkν − εi3)+ (3+ ρ, εi3 − δ1)+ (3+ ρ, δ1− δν).

Sincekν 6 i3+ψ 6 i3, we have(3, εkν − εi3) = 0 which in turn gives

06 i3 − kν + (3+ ρ, δ1− δν)⇒ iν ≡ i3 + (3+ ρ, δ1− δν) > kν > 0

indicatingν ∈ E1(3) which is sufficient to prove the proposition.
The following analogue of proposition 2 is then deduced.
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Proposition 4.Let Ck denote the category of type II unitary irreps with atypicality index less
than or equal tok and their direct sums. The categoryCk is closed under tensor products
with arbitrary type II unitary irreps.

To conclude this section it is worth emphasizing that whilst propositions 1 and 3 hold
for unitary irreps of the came type, a general result for atypicality indices of tensor product
modules does not exist. To see this consider the tensor productV (3)⊗V (3)∗ for arbitrary
3 ∈ D+. The trivial (one-dimensional) module occurs in the above tensor product but has
maximum atypicality indexa0 = m ∧ n.

5. Eigenvalue formula for unitary irreps

In this section we will use the results of propositions 1 and 3 to derive an alternative
expression to (8) for the eigenvalues of the Casimir invariants (7) when acting on unitary
modulesV (µ). Our only assumption is that the reference representationπ = π3 of
theorem 1 is also unitary and of the same type asπµ.

Throughout we letV 0(3) denote theUq(gl(m) ⊕ gl(n)) ∼= Uq(gl(m)) ⊗ Uq(gl(n))
module with highest weight3. The following result is contained in [15].

Theorem 3.Consider theUq(gl(m))⊗ Uq(gl(n))-module decomposition

V (3)⊗ V 0(µ) =
⊕
ν

mνV
0(ν)

wheremν denotes the multiplicity of the moduleV 0(ν) occurring in the decomposition. If
µ, ν are all typical weights, we then have theUq(gl(m|n)) decomposition

V (3)⊗ V (µ) =
⊕
ν

mνV (ν).

The eigenvalues of the invariantsCl (with π ≡ π3) on the moduleV (µ) are given by

χµ(Cl) =
∑
ν

(−1)[ν]mν [βν(µ)]
l
∏
α∈8+0

[(ν + ρ, α)]q
[(µ+ ρ, α)]q

∏
α∈8+1

[(µ+ ρ, α)]q
[(ν + ρ, α)]q

where nowβν(µ) is given by

βν(µ) = 1− q(3,3+2ρ)+(µ,µ+2ρ)−(ν,ν+2ρ)

q − q−1

and [ν] denotes the degree ofV 0(ν) ⊂ V (3)⊗ V 0(µ). �

Note that since the weightsν are all typical the above expression is always well defined.
For eachµ ∈ D+, define the set

8+1 (µ) = {α ∈ 8+1 |(µ+ ρ, α) 6= 0}
so that|8+1 (µ)| + aµ = |8+1 |. We wish to prove the following.

Proposition 5.Let the reference moduleV (3) be a unitary module. The eigenvalues of the
Casimir invariantsCl , on a unitary moduleV (µ) of the same type, are given by

χµ(Cl) =
∑

{ν|aν=aµ}
(−1)[ν]mν [βν(µ)]

l
∏
α∈8+0

[(ν + ρ, α)]q
[(µ+ ρ, α)]q

5α∈8+1 (µ)[(µ+ ρ, α)]q
5α∈8+1 (ν)[(ν + ρ, α)]q

.
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Proof. Note that the above formula is well defined for all unitaryµ ∈ D+. To see how it
arises consider the one-parameter family of finite dimensional modules

V (µ+ γ δ) δ =
n∑

µ=1

δµ

so that(δ, α) = 1, ∀α ∈ 8+1 . If µ is type I (resp. type II) unitary, thenµ + γ δ must be
typical for 0< γ < 1 (resp. 0> γ > −1). For each respective case we hereafter restrictγ

to this range. Consider the following decomposition with3,µ unitary of the same type

V (3)⊗ V 0(µ+ γ δ) =
⊕

mνV
0(ν + γ δ).

Since theν + γ δ are necessarily all typical, we have from theorem 3

χµ+γδ (Cl) =
∑
ν

(−1)[ν]mν [βν+γ δ(µ+ γ δ)]l

×
∏
α∈8+0

[(ν + ρ + γ δ, α)]q
[(µ+ ρ + γ δ, α)]q

∏
α∈8+1

[(µ+ ρ + γ δ, α)]q
[(ν + ρ + γ δ, α)]q . (13)

Now ∏
α∈8+1

[(µ+ ρ + γ δ, α)]q =
∏

α∈8+1 (µ)
[(µ+ ρ + γ δ, α)]q

∏
α/∈8+1 (µ)

[(γ δ, α)]q

= [γ ]
aµ
q

∏
α∈8+1 (µ)

[(µ+ ρ + γ δ, α)]q

so in particular∏
α∈8+1

[(µ+ ρ + γ δ, α)]q
[(ν + ρ + γ δ, α)]q = [γ ]

aµ−aν
q

∏
α∈8+1 (µ)[(µ+ ρ + γ δ)]q∏
α∈8+1 (ν)[(ν + ρ + γ δ, α)]q

. (14)

Taking the limitγ → 0, V (µ+γ δ) reduces to the Kac moduleK(µ) [8] which has the
same infinitesimal character asV (µ). This in turn implies that

χµ(Cl) = lim
γ→0

χµ+γ δ(Cl).

From propositions 1 and 3, we have established thataµ − aν > 0 so that (14) is well
defined in the limitγ → 0 and gives a non-zero contribution if and only ifaµ = aν . Thus
substituting (14) into (13) and taking the limitγ → 0 yields proposition 5. �

6. Link polynomials

The above eigenvalue formula plays an important role in the determination of link
polynomials arising from unitary irreps ofUq(gl(m|n)). In this section we will discuss this
application. We recall that the braid groupBn is generated by elements{bi}n−1

i=1 satisfying

bibj = bjbi |i − j | > 1

bibi+1bi = bi+1bibi+1.

From the Yang–Baxter equation (5), representations of the braid group are obtainable
in the following way. Choose a fixed homogeneous basis forV (3) (assumed unitary
throughout), say{vα}dα=1 and let [α] ∈ Z2 denote the degree of the basis vectorvα. On the
tensor product moduleV (3)⊗ V (3) we define the graded permutation operatorP by

P(vα ⊗ vβ) = (−1)[α][β]vβ ⊗ vα
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and set

σ = q(3,3+2ρ)P (π3 ⊗ π3)R.
Thenσ satisfies (cf (3) and (5))

[σ, (π3 ⊗ π3)1(a)] = 0 (15)

and

(I ⊗ σ)(σ ⊗ I )(I ⊗ σ) = (σ ⊗ I )(I ⊗ σ)(σ ⊗ I ). (16)

If we consider thenth rank tensor product space

V n = V (3)⊗n
we obtain aUq(g) module with representation defined by

π⊗n3 (1(n)(a)) ∀a ∈ Uq(g)
where1(n) is defined recursively by

1(n) = (1⊗ I⊗(n−2))1(n−1) 1(2) = 1.
It follows from equation (16) that the operatorsσi, σ

−1
i ∈ End(V n) defined by

σ±1
i = I⊗(i−1) ⊗ σ±1⊗ I⊗(n−i−1)

give rise to a representation of the braid groupBn. We have the following result from [20]:

Theorem 4.Define

φ(θ) = tr⊗ str⊗(n−1)[π⊗n3 [1(n)(q2hρ )θ ]]

trπ3(q2hρ )

whereθ ∈ Bn is a word in the generatorsσ±1
i , 16 i 6 n−1, and tr and str denote the trace

and supertrace respectively. Thenφ qualifies as a Markov trace satisfying the following:

(i) φ(θη) = φ(ηθ) ∀θ, η ∈ Bn
(ii) φ(θσn−1) = zφ(θ)

φ(θσ−1
n−1) = z̄φ(θ) ∀θ ∈ Bn−1 ⊂ Bn

with

z = z̄ = 1.

�
Let θ̂ denote the link obtained by closing the braidθ ∈ Bn. A functionL(θ̂) defines a

link polynominal if it satisfies

(i) L(θ̂η) = L(η̂θ) ∀θ, η ∈ Bn
(ii) L(θ̂σ n−1) = L(θ̂σ−1

n−1) = L(θ̂) ∀θ ∈ Bn−1 ⊂ Bn.
It is known that given any Markov traceφ(θ), thenL(θ̂) defined by

L(θ̂) = (zz̄)− 1
2 (n−1)

(
z̄

z

)1
2e(θ)

φ(θ) θ ∈ Bn
wheree(θ) is the sum of the exponents of theσi ’s appearing inθ , defines a link polynominal
[21].

For the Markov traceφ(θ) defined by theorem 1 we have
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Corollary 1. L(θ̂) defined by

L(θ̂) = φ(θ) θ ∈ Bn
defines a link polynominal. �

In view of (15) and theorem 1 it is clear that the operators

ck = (str⊗I )(π3(q2hρ )⊗ I )σ k k ∈ Z
are invariant operators and thus act as scalar multiples of the identity onV (3). We let ζk
denote the eigenvalue ofck on V (3). It is straightforward to show the following:

Theorem 5.For a braidθ ∈ Bn of the form

θ = (σi1)k1(σ12)
k2 . . . (σin−1)

kn−1 kj ∈ Z (17)

with (i1, i2, . . . in−1) an arbitrary permutation of(1, 2, . . . , n − 1), the corresponding link
polynomial is given by

L(θ̂) =
n−1∏
i=1

ζki .

�

Let us now assume that the tensor product is multiplicity free; i.e.

V (3)⊗ V (3) =
⊕
ν

V (ν).

In such a case powers of the braid generator are given by the expression [22]

σ k = q2k(3,3+2ρ)
∑
ν

ενq
−k
2 (ν,ν+2ρ)Pν

wherePν denotes the central projection ontoV (ν) andεν is the eigenvalue of theZ2-graded
permutation operatorP on V (ν) in the limit q → 1. If we defineην to be the eigenvalues
of the invariant operators

(str⊗I )(π3(q2hρ )⊗ I )Pν (18)

we may write

ζk = q2k(3,3+2ρ)
∑
ν

ενq
−k/2(ν,ν+2ρ)ην.

However thePν may be expressed [20]

Pν =
′∏

µ6=ν

A− βµ(3)
βν(3)− βµ(3)

which is a polynomial inA: here the prime signifies product over thedistinct eigenvalues
of A in the set{βν(3)} as defined in theorem 3. Thus the invariants (18) are a polynomial
function of the invariantsCl so the quantitiesην and in turnζk may be evaluated using
proposition 5.
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7. Example

In order to illustrate the theory we have developed we will now apply our results to the
evaluation of link polynomials associated with the rankl symmetric irreps ofUq(gl(m|n))
which are type I unitary. Link polynomials obtained through use of the vector irreps
(corresponding to the rank 1 case) give particular cases of the HOMFLY invariants as
discussed in [22].

The rank l symmetric irrep has the highest weightlε1. It admits the following
Uq(gl(m)⊕ gl(n)) decomposition

V (lε1) =
l∧n⊕
k=0

V 0((l − k)ε1+ δ1+ · · · + δk)

from which we deduce the tensor product decomposition

V (lε1)⊗ V 0(lε1) =
l∧n⊕
k=0

⊕
p6l−k/2

V 0(νpk)

with

νpk = (2l − p − k)ε1+ pε2+ δ1+ · · · + δk.
For 0< γ < 1 we have theUq(gl(m|n)) decomposition

V (lε1)⊗ V (lε1+ γ δ) =
l∧n⊕
k=0

⊕
p6l−k/2

V (νpk + γ δ).

In [12] all the unitary irreps with maximal atypicality index were classified for
Uq(gl(m|n)). Assumingm > n+ 1 we may deduce from these results that

aνpk = alε1 if and only if k = 0.

Using the fact that

(νp0, νp0+ 2ρ) = (2l − p)2+ p2− 2p + 2l(m− n− 1)

(lε1, lε1+ 2ρ) = l2+ l(m− n− 1)

it is then a matter of applying proposition 5 to yield

χlε1(Ck) =
l∑

p=0

(
1− q2(p−(l−p)2)

q − q−1

)k
[2l − 2p + 1]q

[l + 1]q

m−n−2∏
i=1

[2l − p + i + 1]q [p + i]q
[i]q [l + i + 1]q

. (19)

To determine the braid generator we observe the decomposition

V (lε1)⊗ V (lε1) =
l⊕

p=0

V (νp0)

from which we obtain

σ k = qk(l2+l(m−n−1))
l∑

p=0

(−1)pq−k(2l
2−2lp+p2−p+l(m−n−1))Pνp0.

Using (19) and some elementary techniques of linear algebra we deduce

ηνp0 =
[2l − 2p + 1]q

[l + 1]q

m−n−2∏
i=1

[2l − p + i + 1]q [p + i]q
[i]q [l + i + 1]q

.
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Finally, for a braid of the form (17) we can explicitly give the associated link polynomial
by the formula

L(θ̂) =
n−1∏
i=1

ζki

where

ζk = qk(l2+l(m−n−1))
l∑

p=0

(−1)pq−k(2l
2−2lp+p2−p+l(m−n−1))ηνp0.

8. Conclusion

In this paper we have derived a well defined eigenvalue formula for Casimir invariants of
Uq(gl(m|n)) when acting on unitary modules. This formula was obtained in essence through
the observation that the categories of unitary modules of fixed type with given atypicality
index are closed under tensor products with arbitrary unitary modules of the same type.
Our results allow the eigenvalues to be calculated in a simpler fashion than using the more
general result developed previously [14, 15]. As an application of our results we have
calculated new link polynomials associated with the rankl symmetric irreps form > n+1.
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